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REVIEW COMMENTARY 

RATE-EQUILIBRIUM LFER CHARACTERIZATION OF TRANSITION STATES: 
THE INTERPRETATION OF CY 

EDWARD S .  LEWIS 
Deportment of Chemistry, Rice University, P .O.  Box 1892, Houston, Texas 77251, U.S.A. 

The effect of substituents on the rate of a reaction and the effect o f  the same substituents on the equilibrium can often 
be related by a linear free energy relation (LFER): log k -  = a log K= + constant, where k' and K =  are the rate constant 
and the equilibrium constant, respectively. This review, concentrating on group transfers, adds to many studies 
describing the use o f  a to describe the transition state. Although the use o f  (I to describe transition states i s  general, 
group transfers constitute a simple class allowing a fairly complete description yet illustrating two often neglected 
contributions. Group transfers can be described by the Marcus equation relating rate to an average identity rate and 
the equilibrium constant; a major contributor to the slope, a, of  the rate-equilibrium LFER i s  the variation o f  identity 
rates with substituent, rather than retlecting product-like character. Substituent effect LFERs are predominantly 
attributable to interaction o f  charges with the substituent. However, a i s  not an exact measure o f  the charge on the 
substituent-containing group, because in a transition state, but often not in a reaction product, there are more remote 
centers of charge which exert a smaller attenuated effect. A simple treatment of this attenuation for group transfers 
i s  proposed. The possibility o f  application o f  these ideas to proton transfer reactions and the interpretation of the 
Brensted a (or j3) is  proposed. 

1.NTRODUCTION 

The transition state (T.S.) is a wonderfully useful struc- 
ture for describing rates through absolute reaction rate 
theory. ' The T.S. is treated as a stable molecule, with 
its thermodynamic properties determinable from the 
rate. Its elemental composition and charge are found 
from the rate law; its structure in part from the 
stereochemical course; its volume, vibrational energies 
and solvation by effect of pressure, isotopic substitu- 
tion, and solvents, respectively, on the reaction rate.2 

Here the concern is the study of charge distribution in 
the transition state, through the use of substituent ef- 
fects on the rate. The intent is to provide a framework 
for the interpretation of the magnitude of these effects. 
Substituents will be limited to those which can be 
expected to  give linear free energy relations (LFERs) 
between rate constants and equilibrium constants. The 
primary example used for illustration will be reaction 
series which follow the Hammett equation, in both rates 

and equilibria, but the results are more general. There 
are numerous sources for these ideas in addition to 
those specifically quoted. One which must be men- 
tioned, although it applies to more extensive substituent 
changes, is the review on the 'Bema Hapothle' by 
J e n ~ k s ; ~  much of his other work is also very relevant. 

SUBSTITUENT EFFECT MEASURES O F  
TRANSITION STATE LOCATION 

If a reaction follows the Hammett equation with p+ (the 
p value for the forward reaction rate) and p= (the p 
value for the equilibrium with the same series of sub- 
stituents), then the plot of log k +  vs log K =  will also be 
linear with a slope p + / p = .  This plot is often better than 
the Hammett plots; it is no longer sensitive to the choice 
of u scale or to solvent effects on u. Further, this log k' 
vs log K =  plot is often linear when the substituents are 
not included in any u list, or even when structural 
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changes are well beyond limitations of Hammett sub- 
stituents. The term p + / p =  will nevertheless be used here 
for such substituent effects. 

Implicit in the following treatments is the assumption 
that the substituent effect, p ,  is measuring only the 
change in an electrostatic interaction between the re- 
action center and the substituent, without consideration 
of the mode of transmission of this interaction. Sub- 
stituent effects also arise in part from changes in 
hybridization, as described by Sager and R i t ~ h i e ; ~  such 
sources, or those arising from major conjugative in- 
teraction between reaction center and substituent, may 
not be covered by the treatment. 

The term p + / p =  may also be applied to reactions 
which follow the Taft equation. The Br~ns ted  01 and p 
(for general acid and general base catalysis) are also 
easily shown to be slopes of a log k+ vs log K' plot for 
a proton transfer. Less direct but still very useful plots 
are those for reactions of nucleophiles, X - ,  where Pnuc 
is the slope of log k f  vs pK, of XH, and for some leav- 
ing groups Y , where PI& is again the slope of a plot of 
log k+ vs pK, of YH. These are equivalent to the log k f  
vs log K= plots to the extent that the substituent effect 
for equilibrium proton loss from YH parallels that for 
(for example) equilibrium carbon loss from RY, or the 
protonation of X -  parallels the formation of the bond 
to carbon or other electrophiles, an inexact but gener- 
ally not very bad approximation. Bernasconi and 
Fornarini' 'normalized' Pnuc to compensate for the dif- 
ferences in substituent effect on the equilibrium pro- 
tonation vs equilibrium bond formation to carbon. 
Some of these corrections are found to be 10--20%. A 
treatment of the quality of this assumption in the gas 
phase was made by Brauman and Han.6 

Following custom, we shall use a not only for 
Br~ns ted  acid catalysis, but more generally for the 
Br~ns ted  p, -& and p + / p = .  The first general 
interpretation of this a was that this is a measure of how 
far the transition state is along the path from reagent to  
product, having a very small value for a reagent-like 
T. S. and a value near unity for a product-like T.S.' In 
fact, i f  the T.S. is considered as a hybrid of reagent-like 
and product-like structures, 01 might be considered to  be 
the weight of the product-like structure, and 1 - a  
would be the weight of the reagent-like structure in this 
hybrid. 

The rationale behind this argument is that in proton 
transfers, in iiucleophilic substitution or addition, the 
charge on  the fragment bearing the substituent changes 
during the reaction. Since the charge changes, 01 is a 
measure of the charge change on going to the transition 
state compared with that on going to the final product. 
With an exception noted later, this interpretation is used 
here. The fragment charges so calculated in the T.S. 
have been called the 'apparent charges.' However, the 
change from reagent charge to the apparent fragment 
charge in the transition is not a general measure of the 

product-like character of the transition state, as will be 
shown below. 

The Hammond postulate' also bears on the question 
of  product-like character in the T.S. The T.S. is very 
close to  the reagent when a highly exothermic reaction 
has a low activation energy, and very close to the pro- 
duct for a highly endothermic reaction with a low 
activation energy for the reverse. Another expression of 
the fraction of  product-like character, p ,  in equation (1) 
has been derived for a particular analytical form' of a 
plot E, vs. AH.  

p = EJ(2Ea - A H )  (1) 

This is roughly equivalent to the slope of a pIot of  
log k+ vs. log K' , and has the value 1/2 for A H  = 0. 
We shall explore in more detail the Marcus equation" 
as a relation between log k+ and log K = ;  it hs been wide- 
ly tested and found applicable to alkyl transfers, ",'' 
proton transfer l 3  and hydride transfers I4,I5 in addition 
to  the electron transfers for which it was originally 
designed. 

In the group transfer (2) between nucleophiles, the 
charge on the reagent X is n, and that on the product 
Y is m. 

12) 

A simply treated case has m = n and most results have 

X - + G Y * X G + Y -  (3) 

The free energy of  activation in the forward direction, 
AGGx, is defined as usual, as is the overall free energy 
change, AG&. The Marcus equation is equation (4), 
where AGZx and AGGY are the free energies of 
activation for the identity reactions ( 5 )  and (6): 

AGvfx = 1/2(AG;x + AG&) + 112 AG& + 

X"+Gy" '+ l  * X " + l G + Y " '  

m = n =  - 1 :  

(4) 
A G& ' 

16[1/2(AG;y+AGxfx)- W R 1  

X ' + G X * X G + X -  ( 5 )  

Y- + G Y * Y G + Y -  (6) 
and w R  is the work term to bring X -  and GY together. 
In this form it is assumed that wR is the same for all X 
and Y, and is equal to - wp,  where w p  is the work to 
separate the immediate products into free XG and Y - .  
Only for the case m = n will this simplification be valid. 
(The work terms are subject to these assumptions, but 
in our work, since the term containing w R  is neglected, 
we can say nothing about it. The wR can in principle 
only be evaluated if the log k f  vs. log K =  is concave 
downward.) The term (1/2)(AG& + AC&) - w R  is 
called the intrinsic barrier. 

The quadratic term can be shown to allow this 
expression to  conform to the Hammond postulate and 
the related reactivity-selectivity principle, RSP. It also 
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(in the case of a constant intripic barrier) makes the 
relation between AG& and AGYX non-linear, although 
a very large range of AG& is often required to detect 
the curvature. However, the slope itself of an 
experimentally linear part of the plot is informative. For 
a constant intrinsic barrier8 equation (4) can be differen- 
tiated with respect to  AGYX to give this slope a: 

a =  1/2+AG&/8[1/2(AG~x+AGGyfy)- W R l  (7) 

Unfortunately, this result is not always in agreemeFt 
with experiment; for several systems with AGyx 
very nearly zero, a is often different from 1/2. 
Some experimental values found for alkyl transfers 
with a changing nucleophile are as follows: for 
the reaction ArSO, + CH303SAr, a = 0~38;'~ for 
ArS- + CH3SPh, a = 0.54;'' for ArSeMe + Me2Se+Ph, 
a = 0.45; I 2  for ArSe- + MeSePh, a = 0.62;" and for 
ArSO: + PhCOCH203SPh, CY = 0.74. l9 All these 
values, with the possible exception of the 
thiophenoxide-thioanisole reaction, differ from 0.5 by 
well over the experimental error. We must conclude that 
equation (7) is incorrect, even though the fit to equation 
(4) has been very good in several tests. The problem lies 
in the constant intrinsic barrier assumption. The iden- 
tity rates for the methyl transfers between sulfonates 
were in fact directly measured, using a "S tracer 
technique. l 6  The identity rates for different sulfonate 
substituents were not constant, instead they varied con- 
siderably and fit the Hammett eqFation with pii = 0.6! 

For these reactions with AG close to zero, the 
quadratic term in equation (4) can be neglected, and it 
becomes equation (8), alternatively written as equation 
(9): 

(8) 
In kyx = (In kxx + In k y ~ ) / 2  + (In K Y X ) / ~  (9) 

and with a variable nucleophile X-  and a constant leav- 
ing group we are left with the equation 

a = d In kyx/d In KYX = (1/2)(d I n  kxx/d In KYX) + 1/2 
(10) 

which allows a value of a different from 0.5 without 
abandoning the Marcus equation. Equation (10) is ap- 
plicable whenever the quadratic term is negligible. 
When the quadratic term is not negligible, the contribu- 
tion of the identity rate variation can normally not be 
neglected either, and both the last term in equation (7) 
and the first term in equation (10) should be used. 

The quantitative relation between a and the identity 
p has been developed for a variable Y ;  l6  the relevant 
relations between the various p values are 

(11) 

AG& = (AG& + AG?y)/2 + AGGx/2 

P +  = (1/2)pii + (1 /2)~ '  
and 

CY = (1/2) + pii/2p= 

l e  
(1  d )  

Figure 1. The More O'Ferrall-Jencks plot for a nucleophile 
substitution, showing the change in charge on X from n to n + 1 
and the change in the charge on Y from m + 1 to m. The diagonal 
shown is the position for all one-step identity reactions, and close 

to that for most alkyl transfers 

Hence the data on a with small AG& can be fitted by 
a non-zero value of pii of the same sign as p =  for 
a > 1/2, and of the opposite sign for a < 1/2. 

The reason why pii # 0 is not very subtle, and is im- 
mediately obvious when the More O'Ferrall-Jencks 
two-dimensional diagram" for a substitution reaction is 
noted. Figure 1 shows such a diagram for a group 
transfer. In this plot the reagent is shown at the lower 
left and the product at the upper right. The vertical axis 
is shown as the charge on Y, varying from rn + 1 in the 
reagent to rn in the product, and the horizontal axis is 
the charge on X, varying from n in the reagent to  n + 1 
in the product. Alternatively, they might have been 
labelled - pis and pnuc, respectively. The extreme upper 
left obviously corresponds to  the structure 
IX"G+Y"l " + " + I  , the lower right is for G = alkyl, best 
represented as [ X .  " + *  G -  myrn+' 1 r n + n + ' .  

The location of the transition state along the identity 
reaction diagonal, here described in terms of non-zero 
values of pii, is akernatively described by Albery and 
Kreevoy" as the tightness parameter, 7. This is unity 
when pii=O and can vary from 0 to  2. The two no- 
tations d o  not have an essential difference. A more 
general treatment by Grunwald2' describes the position 
in terms of 'disparity', referring to  motion perpen- 
dicular to  the reaction coordinate. 22 The hypothetical 
disparity reaction, which has a minimum energy at the 
transition state for the parent reaction, is the conversion 
of the species at the upper left of a More 
O'Ferrall-Jencks diagram such as Figure 1 to the 
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species a t  the lower right. Both species can be 
hypothetical. For alkyl transfers (with m = n = - 1) the 
disparity reaction is presemably reaction (13): 

x- G +  Y-  + x. G-  * Y  (13) 
Any point on the top left to  bottom right diagonal is 

a potential identity reaction transition state, for it is the 
line for which the charge on X and that on Y are iden- 
tical, a requirement for the identity transition state. 
However, at point a these charges are exactly - 1/2, at 
point b the absolute value of the charges on X and Y are 
each greater than 1/2 and at points c they are less, the 
remainder of the total charge resides on G, thus for b 
the charge on G is positive and for c G is negatively 
charged. For many group transfers, notably alkyl 
transfers between nucleophiles, there is very little devi- 
ation from this identity reaction line, because t p  intrin- 
sic barriers are large, and the range of AGyx is not 
large. The absence of significant selectivity changes with 
large rate changes23 is a manifestation of the unimpor- 
tance of the Marcus quadratic term. Hence for these 
reactions a differs from 0.5 principally because p , ,  dif- 
fers from zero. No case of a transition state exactly at 
a has been found. While cases may be found of this 
perfectly central transition state, it is now clear that it 
is at best an exceptional model for the transition state 
for alkyl transfers. The transition state consistent with 
this More O’Ferrall-Jencks diagram is the resonance 
hybrid 1: 
X - G - Y + ~ X - G Y - + + X - G + Y -  

l a  l b  l c  
U X - G - - y + + X .  G-  .y 

thus the transition state a t  point a has equal contribu- 
tions of l a  and lb ,  and a combination of l c ,  Id and l e  
so that X and Y each have a 1/2 negative charge. 
Similarly, the T.S. marked b has equal l a  and l b ,  but 
a predominance of l c ,  and c has an excess of Id or l e .  
A transition state not generally found for alkyl transfer, 
although possible for some faster group transfers, might 
be d with a substantial excess of both l a  and l c .  

Transition states near the upper left corner with 
major contributions of l c  have been described as 
‘loose,’ ‘exploded’ or having ‘bond breaking before 
bond making.’ In alkyl transfers these pose no pro- 
blems; they have also been described as borderline SN 1, 
and are widely understood. The a-arylethyl transfers 
between nucleophiles and of methoxymethyl transfers 
between amines are an extreme example, where the iden- 
tification of nucleophilic participation is far from 
trivial. 24 Examples with SO3 or phosphonyl transfer 
with ‘exploded’ transition states are also known. 25 

Transition states near the lower right corner have 
been described as ‘tight’ or with ‘bond making before 
bond breaking.’ However, with some substituted benzyl 
and phenacyl transfers, this description requires a con- 

Id l e  

tribution of hypervalent carbon, which appears un- 
likely. The explanation in terms of structure l e  appears 
more attractive for carbon transfer, although transfers 
of groups centered around atoms of higher atomic 
number can easily have hypervalent contributions; 
indeed, the hypervalent structure may be a real 
intermediate. 

The predictions of the hybrid 1 lead to  an under- 
standing of the deviations from point a. Very stable 
anions (such as sulfonates) lead to an emphasis on struc- 
ture lc ,  groups G well able to tolerate a positive charge 
likewise emphasize l c ,  G beyond the first row of the 
Periodic Table can stabilize Id, and X -  and Y -  easily 
oxidized to  X.  and Y .  will favor the structure l e  (an 
electron paired structure with a ‘formal’ XY bond). The 
contribution of l e  accounts for the often obseved cor- 
relation between rate of attack of a nucleophile and its 
oxidation potential. 26 

This introduction of a second dimension in the re- 
action coordinate diagram constitutes a considerable 
improvement in the interpretation of a. We no longer 
require that the total charge be divided only between the 
leaving group and the attacking group. Hence the 
transferring group can carry charge of either sign. It 
should be noted that the variation of the charge on the 
transferring group is not a modification or an extra term 
on the Marcus equation; it is contained within the equa- 
tion as a variable intrinsic barrier present even with 
modest structural changes. 

The charge distributions, calculated in this way and 
called ‘effective charges,’ will in this paper hereafter be 
called ‘infinite attenuation charges.’ The charge trans- 
ition state distributions, calculated very simply from a, 
are not quite correct, even with the assumptions that p c  
is sensitive only to  electrostatic interactions of substi- 
tuents with the rest of the molecule, because there are 
more remote centers of charge in the transition state. 

The estimation of transition state ‘effective charges’ 
from substituent effects is of course not limited to group 
transfers, which have clearly defined identity reactions 
and the Marcus equation is applicable. ‘Effective 
charges’ can also be calculated for reactions for which 
no identity reactions can exist, such as eliminations or 
additions to  multiple bonds. B e r n a ~ c o n i ~ ~  has suggested 
an intrinsic barrier as well as a thermodynamic driving 
force for such reactions; the intrinsic barrier is that for 
a reaction in a series having zero free energy change 
within the collision complex. 

Evidence points in many such reactions to different 
extents of forming or breaking the various bonds in the 
transition state, described by Sayers and Jencks” as an 
‘imbalance’ and by Berna~coni~’  as the operation of the 
‘principle of non-perfect synchronization.’ It is not 
possible to  attempt to describe the entire charge 
distribution in such reactions with a single substituent 
effect study. There are examples where multiple substi- 
tuents have been fruitfully varied. 
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The work on alkyl transfers was nearly all done in 
dipolar aprotic solvents. In these solvents the anions are 
certainly solvated, but not by the rather specific 
hydrogen bonds that characterize protic solvents. Work 
in protic solvents can introduce substituent-dependent 
solvation which can deform Pnuc or Pig. An example by 
JencksZ9 has a negative Pnuc, presumed to arise from a 
necessary prior reversible cleavage of a hydrogen bond 
to  a nucleophile, which is followed by attack with a very 
small dependence on basicity. 

REMOTE CHARGE EFFECTS 

The transition state for the group transfer (2) between 
nucleophiles may be represented by the structure 2, 
where yx is the charge on X, 6 is the charge on G and 
yy is the charge on Y. 

[XYx ... G* ... Y Y Y ]  “ ‘ + n + l  

2 

In the following approach, we divide these charges 
sharply and localize them within the fragments X, G 
and Y. In this way the fragment charges add up to the 
total charge: 

y , + y y + 6 = m + n +  1 (14) 

In relating p + / p =  for a variable Y to the charge 
distribution in the transition state, clearly the largest 
contributor will be the charge yy. However, we should 
not neglect the interaction of the more remote charge, 
6, with the substituent in Y, or even that of the still more 
remote charge yx with the substituent in Y. We can 
allow for these interactions by introducing an attenu- 
ation factor a to  allow for the effect of introducing an 
extra (partial) bond between 6 and Y, and a further at- 
tenuation of a’ for the interactions of yx with the 
substituent in Y .  In dealing with normal single bonds an 
attenuation of a factor of 2-2.5 per CH2 group in- 
troduced between the reaction site and the fragment 
bearing the substituent has generally been accepted. 30 

The partial bonds in a transition state are longer than 
those in stable molecules; we shall use a value of a = 3 
as a working value, but this is still considered an ad- 
justable parameter, with the constraint 2 < a < 03. 

The relation between the various charges and a for a 
variable leaving group becomes equation (15). The value 
of a can be approximated in this case by -Pig. 

a = m +  1 - ( y y + 6 / a + y x / a 2 )  (15) 
For the particular case of nucleophilic substitution 

with G = alkyl and m = n, it has been noted that there 
is little difference between identity reactjons and un- 
symmtrical reactions except for the AG term in the 
Marcus equation. Hence we can carry over the necessary 
feature of the identity reactions which have yy = yx 
to the unsymmetric reactions. With this restriction, 

Table 1. Transferring group charges, b,  from equation (15) for 
a = 3  and m 

Reaction 01 b ( a = m ) ”  6 ( a = 3 )  

PhS03 + MeO3SAr 0.64 -0.28 -0.4 
PhS- + MeSAr 0.46 -0.08 - 0 . 4 4  
PhSe- + MeSeAr 0.38 - 0 . 2 4  -0.8 
PhSOl + PhCOCH203SAr 0.26 - 0 . 4 8  - 0 . 5 g b  
PhSeMe + MezSe’Ar 0.46 -0.08 0.00 

aThis value is the ‘effective charge’. 
Because of the delocalization of the charge in the phenacyl group, with 

most of the charge on oxygen, the term &/a’ was substituted for S/u in 
equation (15). This is why the attenuation correction is smaller than the 
example immediately above. 

equation (15) together with equation (14) allow (for any 
value of a )  a solution of yu and 6 from an experimental 

These values (for a = 3) differ from the earlier ‘in- 
finite approximation’ values. The values for some re- 
actions given before are presented in the Table 1. 

The use of equation (15) to  calculate the charge 
distribution is, of course, only a first approximation to 
the effect of remote charges. The direction of the effect 
when the attentuation is finite can be estimated by con- 
sidering the limit for a = 1 .  In this case equation (15) 
reduces to  

a. 

a = m + l - ( m + n + l ) =  - n  (16) 
and when the substituent containing group is anionic, 
a = 1 ,  and only the charge on the attacking group is 
relevant. Similarly, when the attacking nucleophile is 
neutral, regardless of the charge on GY, a = 0. No in- 
formation on the charge distribution is now contained 
in a. While this limit is meaningless, these limits point 
to the direction that finite a can change a for a par- 
ticular charge distribution. The precision of calculation 
of the charge distribution falls with a, and even the 
a = 3 values of 6 in Table 1 are less precise than the 
a = 05 values. 

A similar equation can be derived when the changing 
reagent is the nucleophile X in reaction (2): 

(17) 
In this case a can be approximately measured as Pnuc. 
The same assumption for G = alkyl of yx = y y  can be 
applied if rn = n,  and the two equations (14) and (17) 
can be solved for yx and 6, given a.  Again, the limits for 
a = I are a = 1 i f  m = 0, corresponding to + 1 net 
charge on the transition state, and a = 0 if the transition 
state has a net charge of - 1, m = - 1 .  

Equations (15) and (17) also apply to  cases where 
m # n.  In this case, for example the Menschutkin re- 
action, yx most likely is of the opposite sign from yy, 
and the assumption that they are equal is clearly wrong. 

a = (yx + 6/a  + y y / a 2 )  - n 
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The Menschutkin reaction has been extensively studied 
from many aspects; many are quoted by Ando et al., ” 
Arnett and Reich,” Matsui and T ~ k u r a ~ ~  and 
Abraham34. Thus equation (15) or (17), which now have 
three unknowns, can no longer be solved with equation 
(14) for the charge distribution. Yet the effect is still pre- 
sent, and the changes can be significant. It is still possi- 
ble to  solve the a = 00 case, where 01 for the leaving 
group variation is a =  m + 1 - yy, or for a varying 
nucleophile, where a = yx - n, but a solution for 6 re- 
quires both. For any particular charge distribution, 01 
may come closer to zero, because of the influence of 
remote charges, regardless of whether the attacking 
neutral nucleophile or the leaving group contains the 
substituents. 

There are few data on the Menschutkin reaction in 
which both the leaving group and the attacking 
nucleophile can be varied to establish a a t  both ends in 
the same system, but the work of Ando and co- 
w o r k e r ~ ” ~ ~ ~  is a distinct exception. Although this work 
on substituted dimethylanilines with various substituted 
benzenesulfonate esters was designed to  study the carbon 
and hydrogen isotope effects on the transferring group, 
it also yields substituent effects on  the rates summarized 
in Table 2. The p+ values are newly calculated. 

There are no comparable data on the equilibrium; we 
can find several measures of p= for protonation of 
substituted dimethylanilines in protoc solvents and they 
fall in the range - 2 - 5  to - 4 .  The value used 
( p =  = - 4.2) may be more reliable since it is in the sol- 
vent dimethylformamide but it is for the unmethylated 
a n i l i n e ~ . ~ ~  The value of Pnuc so estimated is about 0.55. 
The probable benzyl group positive charge is likely 
delocalized enough so that the infinite attenuation ap- 
proximation is almost adequate. 

Table 2. Estimated OL and  p values for 
YC6H4NMe2 + GO3SC6H4X from refs 29 and 33 

Y G X p+ p=(est.) aa 

p-CH3 p-Bromobenzyl Variable +2*06b > +2.94‘ <0.70 
p-OCH3 Benzyl Variable +2.17b > +2.94‘ <0.74 
p-CH3 Benzyl Variable +2.10b > +2.94‘ <0-71 
H Benzyl Variable +2.04b > +2.94‘ <0.69 
Variable p-Bromobenzyl p-C1 -2 .3b  - (>4 .2 )d  <0.55 
Variable Benzyl p-C1 -2.33b -(>4.2)d <0.55 
Variable CH3 p-Br -2.45e -4.2‘ 0.58 

’This is p + / p =  for the sulfonate leaving groups and Auc for the amines. 

‘This is the value for equilibrium loss of sulfonate groups in sulfolane; 
the corresponding value in acetone would presumably be larger. 
dThis is the value for acidity of substituted anilinium ions in the higher 
dielectric solvent dimethylf~rmamide’~ 
‘In acetonitrile. 
‘As in footnote d except there is no significant dielectric constant cor- 
rection in this acetonitrile solvent. 

acetone. 

The a for the leaving group variation may be estimated 
using p for the equilibrium loss of substituted sulfonates 
( p  = + 2-94) from methyl arenesulfonates in sulfolane; l6 

it may be higher in the lower dielectric acetone. Neglect- 
ing this solvent change on p = ,  a = 2-1/2.94 = 0.7.  Such 
a value appears to indicate a product-like transition state. 
However, assuming an identity rate variation similar to  
that for the methyl transfer case, the corresponding in- 
finite attenuation charge development on the sulfonate 
might be nearly this large for a transition state with little 
bonding to the nucleophile. With all the uncertainties, 
an a for the leaving group appears reasonable for a rather 
central T.S. with nearly equal product-like and reagent- 
like character. 

In sum, these substituent effects are not entirely incom- 
patible with having about equal contributions of reagent- 
like and product-like character, as has been found for 
the negatively charged transition states for methyl 
transfer, but the very rough Pnuc estimates of a d o  ap- 
pear to be large. The variation of p+ for variation of either 
group for changes in the other group fall in a systematic 
order and might therefore be suitable for analysis by 
Jenck’s method, 3837 but it is not clear how significant these 
variations are. 

To the extent that the infinite attenuation is a good ap- 
proximation, the information on the charge distribution 
is given by 6 = - ( Plg + Pnuc) = + 0.2,  when the charge 
on the attacking amine is Pnuc and that on  the leaving 
group is Plg (a negative number). Unfortunately, the large 
uncertainties on p for the amine pK, values and the im- 
perfect correlation between p + / ~ =  and Pnuc or -Plr is too 
great t o  give this estimate of 6 much credibility, even if 
it is plausible. 

A further possibly major problem in dealing with the 
Menschutkin reaction within the context of the Marcus 
equation is the work term wR. Because wR involes the 
formation of a neutral complex, where wp resembles an 
intimate ion-pair dissociation, it is unreasonable to 
assume that wR = - wp. Hence the measured equilibrium 
constant differs from that for conversion of the reagent 
complex t o  the product complex. 

THE BRQNSTED CATALYSIS LAW 

The most deeply rooted notion of measuring the extent 
of product-like character from substituent effects is in the 
interpretation of the Brmsted catalysis law. We can now 
ask if the special effects attributed to variable identity rates 
and to the effects of remote charges can influence the in- 
terpretation of structural change on proton transfer rates. 

In alkyl transfers the value of a was shown not to repre- 
sent the amount of product-like character when in the 
More O’Ferrall-Jencks diagram the transition state lies 
well off the diagonal from reagent to product. The ques- 
tion then to be asked is whether or not there is a cor- 
responding effect on the Brernsted coefficients. 

The discussion is limited to variable oxygen and 
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nitrogen acids and bases, and is within the context of the 
Marcus equation. It will avoid carbon acids and bases 
such as the 'anomalous' nitro compounds, which have 
been extensively discussed and are now fairly well 
understood. 38 

The transition states for alkyl transfers that are off the 
diagonal in the More O'Ferrall-Jencks diagram are 
characterized by having varying identity rates. Using the 
same arguments for proton transfers brings up the ques- 
tion of the magnitude of identity rates for oxygen or 
nitrogen acid-base pairs. Since a large fraction of known 
proton transfer rates between oxygen or nitrogen have 
been shown to be nearly diffusion controlled, it has been 
generally accepted that all these reactions have low and 
essentially the same barriers. Eigen3' has described nor- 
mal acid-base reactions as those which are diffusion con- 
trolled in the thermodynamically favourable direction. 
Nevertheless, in his review, most of his examples are one 
or two orders of magnitude slower than the diffusion- 
controlled limit for the thermodynamically neutral cases; 
thus we are not forced to  assume that identity reactions 
involving oxygen or nitrogen acid-base pairs are 
necessarily diffusion controlled. The diffusion control is 
not related formally to the Marcus equation, which is con- 
cerned with the barrier t o  be overcome after a collision 
complex is formed. It is therefore essentially a 
unimolecular process with a barrier less than about 5 kcal 
mol-' .  We can reproduce the Eigen curves with a bar- 
rier of as high as 7 kcal mol-'. 

We can ask whether a barrier can vary within this limit 
of 5-7 kcal that is correlated with acid strength. For 
generality, we should stay well within that limit, with 
perhaps a range of AG& of 2 kcal mol-' for a range 
of free energies of 8 kcal mol-' corresponding to a orange 
of Ka values of about lo6.  In the range near A G  = 0, 
equation (10) then gives 

a =  1 1 / 2 X 2 / 8 +  1/2=0*5  2 1.25=0*375-0 .625  
(18) 

This range is plausible even for diffusion-controlled iden- 
tity reactions resulting from a correlation of the identity 
rate with acid strength. 

It has been customary to attribute the variation of a 
from 1/2 to  represent the derivative of the quadratic term 
as shown in equation (7 ) .  Since in alkyl transfer this in- 
terpretation is almost always wrong, we must ask whether 
the neglect of the quadratic term is also justifiable for 
porton transfers. Clearly this depends on the intrinsic bar- 
rier, and also on work terms. For reactions with rate con- 
stants less than 1 Imol-', and with equilibrium constants 
within 5-6 powers of ten of unity, the quadratic term 
contributes very little, unless wR is large.40 It is of in- 
terest that that the Marcus equation has been fitted to 
some curved Bransted plots for slow reactions, but the 
fits usually require a very large wR. When the Br~ns ted  
plot for slow reactions is experimentally linear, and the 
equilibrium constant is either near unity or covers a 

wide range, we may assume that there is no significant 
contribution of the quadratic term, and we are not 
measuring fraction of product-like character when a is 
determined. Here then we suggest two other soruces of 
a # 0.5. 

Chiang et al. 4 1  have perhaps found an example of the 
varying identity barrier in their discussion of the peculiar 
behavior of calculated work terms in fitting ketonization 
of enols to  the Marcus equation. They use instead a 
variable Albery-Kreevoy T value and write, following 
Kreevoy and Lee: 

= 0.5(1 + AG/AGo$) + 0.5(1 - 7) (19) 

However, writing this is compatible with the Marcus equa- 
tion only if it is recognized that T # 0 corresponds to a 
variable identity rate, which is unquestioned in the hydride 
transfers of ref. 14, 15, but has not previously been re- 
cognized for proton transfers. The 1 - T term corre- 
sponds exactly to the first term of equation (10). 

The remote charge effect must also contribute, although 
the formal treatment represented by equations (15) and 
(17) may be inadequate. Let us consider several cases in 
which the acid or base represented as HA or B is the one 
of variable structure. 

As in the case of alkyl transfer, for a transfer, for a 
transition state charge on the A fragment of 0.5 less than 
the charge on H A  in a reaction with a neutral substrate, 
a will be less than 1/2 because of the finite attenuation, 
it will be less than 1/2 if a cationic substrate is being pro- 
tonated and more than 1/2 if an anionic substrate is being 
attacked. 

Similarly, if the charge on  B in the transition state is 
0.5 more than B, a will be more than 1/2 for proton 
abstraction from a cationic species and less than 1/2 for 
a neutral or anionic species. 

No matter what the charge type, the finite attenuation 
will deform the observed a in the direction determined 
mostly by the charge on the substrate. The finite attenu- 
ation makes a different from the charge change at the 
variable structure fragment. At present, there seems to 
be no basis for selecting a value of a to allow a quan- 
titative measure of this effect. However, the usual 
Br~ns ted  relations for a variety of bases with a single 
substrate will all be deformed in the same direction. Only 
differences in CY influenced by a change in charge of the 
substrate will have an effect. There seem to be few data 
of this sort, so the opportunity to compare the data with 
experiment appears to  be lacking. 

We conclude that many slow proton transfers, in 
addition to slow alkyl transfers, may have transition states 
as close to reagents as to products, and yet have a value 
of a significantly different from 1/2. 
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